Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks.

نویسندگان

  • Brian Magnuson
  • Bilgen Ekim
  • Diane C Fingar
چکیده

The ribosomal protein S6K (S6 kinase) represents an extensively studied effector of the TORC1 [TOR (target of rapamycin) complex 1], which possesses important yet incompletely defined roles in cellular and organismal physiology. TORC1 functions as an environmental sensor by integrating signals derived from diverse environmental cues to promote anabolic and inhibit catabolic cellular functions. mTORC1 (mammalian TORC1) phosphorylates and activates S6K1 and S6K2, whose first identified substrate was rpS6 (ribosomal protein S6), a component of the 40S ribosome. Studies over the past decade have uncovered a number of additional S6K1 substrates, revealing multiple levels at which the mTORC1-S6K1 axis regulates cell physiology. The results thus far indicate that the mTORC1-S6K1 axis controls fundamental cellular processes, including transcription, translation, protein and lipid synthesis, cell growth/size and cell metabolism. In the present review we summarize the regulation of S6Ks, their cellular substrates and functions, and their integration within rapidly expanding mTOR (mammalian TOR) signalling networks. Although our understanding of the role of mTORC1-S6K1 signalling in physiology remains in its infancy, evidence indicates that this signalling axis controls, at least in part, glucose homoeostasis, insulin sensitivity, adipocyte metabolism, body mass and energy balance, tissue and organ size, learning, memory and aging. As dysregulation of this signalling axis contributes to diverse disease states, improved understanding of S6K regulation and function within mTOR signalling networks may enable the development of novel therapeutics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway.

BACKGROUND The mammalian target of rapamycin (mTOR) regulates multiple cellular functions including translation in response to nutrients, especially amino acids. AMP-activated protein kinase (AMPK) modulates metabolism in response to energy demand by responding to changes in AMP. RESULTS The treatment of SV40-immortalized human corneal epithelial cells (HCE-T cells) with 5-aminoimidazole-4-ca...

متن کامل

Follistatin could promote the proliferation of duck primary myoblasts by activating PI3K/Akt/mTOR signalling

FST (follistatin) is essential for skeletal muscle development, but the intracellular signalling networks that regulate FST-induced effects are not well defined. We sought to investigate whether FST promotes the proliferation of myoblasts through the PI3K (phosphoinositide 3-kinase)/Akt (protein kinase B)/mTOR (mammalian target of rapamycin) signalling. In the present study, we transfected the ...

متن کامل

S6 kinase 2 promotes breast cancer cell survival via Akt.

The 40S ribosomal protein S6 kinase (S6K) acts downstream of mTOR, which plays important roles in cell proliferation, protein translation, and cell survival and is a target for cancer therapy. mTOR inhibitors are, however, of limited success. Although Akt is believed to act upstream of mTOR, persistent inhibition of p70 S6 kinase or S6K1 can activate Akt via a negative feedback loop. S6K exists...

متن کامل

Molecular and Cellular Pathobiology S6 Kinase 2 Promotes Breast Cancer Cell Survival via Akt

The 40S ribosomal protein S6 kinase (S6K) acts downstream of mTOR, which plays important roles in cell proliferation, protein translation, and cell survival and is a target for cancer therapy. mTOR inhibitors are, however, of limited success. Although Akt is believed to act upstream of mTOR, persistent inhibition of p70 S6 kinase or S6K1 can activate Akt via a negative feedback loop. S6K exists...

متن کامل

TOR signaling in mammals.

Central to the pathways that induce cell growth in mammals is the murine target of rapamycin (mTOR), a multi-domain, 298 kDa, evolutionarily-conserved Ser/Thr kinase that is inhibited by the drug rapamycin (Schmelzle and Hall, 2000). mTOR exerts its effects by phosphorylating eukaryotic initiation factor 4E binding protein 1 (4EBP1), which inhibits 5′-cap-dependent mRNA translation (the majorit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 441 1  شماره 

صفحات  -

تاریخ انتشار 2012